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Abstract

This paper presents an approach for developing formally verifi-
able conflict detection algorithms for aircraft flying arbitrary, nonlin-
ear trajectories. The approach uses a multivariate polynomial global
optimization algorithm based on Bernstein polynomials. Since any
continuous function on a closed interval, such as an aircraft trajectory
within a closed interval of time, can be uniformly approximated by a
Bernstein polynomial, this global optimization algorithm can be used
to define conflict detection algorithms for arbitrarily complicated tra-
jectories. Conflict detection algorithms developed using this approach
can be formally verified in a mechanical theorem prover. This repre-
sents an improvement over standard approaches to conflict detection
for complex trajectories that essentially search for conflicts by testing
many future states and are therefore not guaranteed to detect a given
conflict. The proposed approach is illustrated with a formally verified
conflict detection algorithm.
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1 Introduction

In air traffic management, a loss of separation is a violation of the separation
requirement between two aircraft. This separation requirement is given by a mini-
mum horizontal separation, e.g., 5 nautical miles, and a minimum vertical separa-
tion, e.g., 1000 feet [13]. Assuming an aircraft trajectory model, conflict detection
algorithms predict whether or not two aircraft will lose separation within some
lookahead time, which is typically 5 minutes. When a conflict is detected, conflict
resolution algorithms compute resolution maneuvers for the aircraft that main-
tain the required aircraft separation. Conflict detection and resolution (CD&R)
systems are part of computer-based systems that assist pilots and air traffic con-
trollers to maintain safety in the airspace by keeping aircraft separated. These
separation assurance systems are critical elements of air/ground distributed oper-
ational concepts for the next generation of air traffic management systems such
as the US’s Next Generation of Air Traffic Systems (NGATS) [23] and Europe’s
Single European Sky ATM Research (SESAR).1

The internal logic of CD&R algorithms relies on the reported current state
information of the aircraft, typically 3D position and velocity vectors, and an
aircraft trajectory model that propagates the current state information for a given
lookahead time. Several state propagation methods for CD&R systems have been
proposed [8]. For example, state-based conflict detection algorithms use a linear
projection of the current state of the aircraft. This simple aircraft trajectory
model corresponds to a point mass moving along a straight line at constant speed.
More sophisticated state propagation methods assume nonlinear trajectories or
probabilistic trajectory models.

This paper concerns formal verification of conflict detection algorithms that
model aircraft trajectories as continuous functions over real numbers. In the con-
text of this paper, formal verification refers to a computer-checked mathematical
proof that a given algorithm satisfy some safety properties, where the algorithm
and the properties are expressed in a formal specification language. In this sense,
an algorithm is not a computer program, but a mathematical abstraction of a
computer program. Formal verification, as defined in this paper, concerns the
functional and logical correctness of algorithms. The formal methods area known
as software verification deals with correctness of computer programs by looking
into the semantic details of programming languages. Software verification is out
of the scope of this paper. In particular, this paper assumes that the arithmetic
used in the description of conflict detection algorithms has real number semantics,
as opposed to floating-point number semantics.

A safety property of conflict detection algorithms known as soundness states

1http://www.eurocontrol.int/content/sesar-and-research.
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that all potential conflicts, according to a given aircraft trajectory model, are de-
tected. In this sense, an algorithm that always returns true is sound. Of course,
such an algorithm is not a particularly useful. Another safety property, known
as completeness, states that the algorithm only detects potential conflicts. Hence,
the algorithm that always return true is sound but not complete. The notions of
soundness and completeness are related to the notions of missed alerts and false
alerts, respectively. A conflict detection algorithm that misses alerts negatively
affects the safety case for separation assurance systems, since it may indicate that
certain maneuvers are safe when they are not. False alerts also have safety impli-
cations as they may diminish the confidence that pilots and air traffic controllers
have on these systems.

Properties such as soundness and completeness have been formally verified
for CD&R algorithms that assume linear trajectories using mechanical theorem
provers [10, 12]. A conflict resolution algorithm for curved trajectories has been
formally verified using hybrid-model checking techniques [18]. Other type of tra-
jectories, such as piece-wise linear trajectories admit analytical methods [6,7] and
thus, formal verification of these algorithms is feasible. Most CD&R algorithms
that handle complicated trajectories either iterate an analytical method at spec-
ified discrete steps [2, 16] or rely on numerical approximation methods [1, 17, 20].
Formal verification of these kinds of algorithms is very difficult. In general, sound-
ness and completeness of iterative algorithms cannot be inferred from soundness
and completeness of the analytical methods that they iterate since some conflicts
may be missed or not correctly solved for input values outside the specified discrete
steps. Furthermore, CD&R algorithms based on numerical methods are neither
sound nor complete unless the computation errors are correctly accounted for.

This paper presents a numerical approximation approach for designing prov-
ably sound and complete conflict detection algorithms for arbitrary aircraft tra-
jectories. In this approach, conflict detection for arbitrary aircraft trajectories
is expressed as a global optimization problem and then analytically solved using
Bernstein polynomials [9]. Methods for global optimization based on Bernstein
polynomials allow for the computation of lower and upper bounds for arbitrary
continuous functions, e.g., the separation distance between two aircraft, to any
desired precision. These bounds are guaranteed to be correct. This is in contrast
to some numerical methods for global optimization such as genetic algorithms [5]
that do not guarantee the correctness of their results.

An important feature of the mathematical development presented in this paper
is that it has been specified and formally verified in the Prototype Verification Sys-
tem (PVS) [14]. PVS is a proof assistant that consists of a specification language,
based on classical higher-order logic, and a mechanical theorem prover for this
logic. The PVS specification language enables the precise definition of mathemat-
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ical objects such as functions and relations, and the precise statement of logical
formulas such as lemmas and theorems. Proofs of logical formulas can be mechan-
ically checked using the PVS theorem prover, which guarantees that every proof
step is correct and that all possible cases of a proof are covered. All propositions,
lemmas and theorems presented in this paper have been mechanically checked in
PVS for logical correctness.

The rest of the paper is organized as follows. The mathematical notation
used in this paper and its relation to the formal language of PVS is explained
in §2. The conflict detection problem and how this problem can be expressed as
a global optimization problem is discussed in §3. As part of this work, Bernstein
polynomials have been formally specified and their main properties have been
verified in PVS. This formal development of Bernstein polynomials is described
in §4. A method for finding bounds of the maximum and minimum values of
functions that are defined as the maximum of two polynomials is presented in §5.
That method, which uses Bernstein polynomials, is the core function of a verified
conflict detection algorithm for arbitrary trajectories proposed in §6. The last
section concludes this paper.

2 Mathematical Notation and PVS

The use of a formal language, e.g., in this case the specification language of PVS,
enforces rigorous definitions of mathematical objects, where all dependencies are
clearly specified. This level of rigor guarantees a very high confidence on the
correctness of the results presented in this paper. However, this also makes the
notation heavy and difficult to read for the non-expert reader. To make this
development more accessible to the casual reader, the work presented here uses
a simpler mathematical notation that does not require the reader to be familiar
with the syntax or semantics of the PVS language.

Despite the use of standard mathematical notation in many places, this paper
heavily emphasizes the abstract data structures and specific signatures (types)
of the functions used in the algorithms. This includes writing many properties as
explicit statements involving function calls. The reason for this is that the intended
audience includes not just mathematicians interested in global optimization but
also researchers in air traffic management who may want to implement a formally
verified conflict detection algorithm whose output can be trusted. Such readers
will be interested in specific definitions that can be directly translated to code.

The PVS specification language is strongly typed, i.e., all declarations are ex-
plicitly typed. This feature guarantees that all PVS functions are total and well-
defined. For instance, a mathematical formula that includes a division needs to
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make explicit the fact that the divisor is different from zero, otherwise the expres-
sion would be undefined. In PVS, these conditions are handled by a type system,
which is enforced by the PVS type-checker. Since PVS type annotations tend to
be verbose, formulas in this paper are implicitly typed, i.e., it is assumed that the
type domain of variables is inferred from the context where the formula appears.

PVS is based on higher-order logic, so it supports the definition of functions
that return functions or that have functions as arguments. The notation λx : e
represents an anonymous function that takes as input x and returns e. As discussed
above, PVS is a strongly typed language and, therefore, the type of x has to be
explicitly declared in PVS. This paper assumes that the type of x is inferred
from the context. A function that returns another function is called a parametric
function and its arguments are called parameters. By convention, parameters are
sub-indicated, e.g., a parametric function f that given t, x, and y returns a function
of type R→ R is denoted ft,x,y, where t, x, y are the parameters of f . Since ft,x,y
has the type R → R, the function application ft,x,y(z) has the type R for any
z ∈ R.

PVS provides numerical types for natural and real numbers that correspond to
the mathematical sets N and R. In PVS, 1/3 + 1/3 + 1/3 is exactly equal to 1
and sqrt(2) refers to the unique positive real number such that sqrt(2)*sqrt(2)
is exactly equal to 2. The sets of integer and real numbers are unbounded and it
is possible to prove properties about arbitrary large or small numbers.

The PVS specification language is a mathematical language rather than a
programming language, where algorithms are defined as mathematical functions.
Therefore, functions do not have side effects and variables have the mathematical
meaning of arbitrary constant values instead of memory cells as in programming
languages. By convention, names of functions that are intended to have a logical
meaning, i.e., predicates, are written in italics. Functions that are intended to be
used as algorithmic procedures are written in typewriter font.

The PVS specification language supports data structures such as records and
tuples. Since records in this paper are mainly used to specify outputs of algorithms,
they are also written in typewriter font. Record types are defined as T = a1:T1 ×
. . .× an:Tn, where T is the name of the record type, a1 . . . an are the names of the
fields, and Ti, for 1 ≤ i ≤ n, is the type of the field ai. Field access will be denoted
using the dot symbol. The operator with is used to overwrite records, e.g., if t is
a record of type T, the record t′ = t with [ a1 ← e, an ← f ] refers to the record
that is equal to t in every field except in a1 and an, where it has the values e and
f , respectively, i.e., t′.a1 = e, t′.an = f , and for all 1 < i < n, t′.ai = t.ai.

Tuples will be typed in lowercase boldface, e.g., aaa = (a0, . . . , am−1) is an m-
tuple where subindices from 0 to m − 1 are used to denote particular elements of
aaa. Given a positive natural number m, the order < between m-tuples is defined
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by aaa < bbb if and only if aj < bj for all 0 ≤ j < m. Similarly, the order ≤ between
m-tuples is defined by aaa ≤ bbb if and only if aj ≤ bj for all 0 ≤ j < m. The m-tuples
0 and 1 represent the tuples whose components are all 0 and all 1, respectively. A
bounded box [aaa,bbb], where aaa < bbb, denotes the set of m-tuples greater than or equal
to aaa and less than or equal to bbb. The box [000,111] is called the unit box.

As in the case of records, tuples can be overwritten using the operator with,
e.g., if aaa is an m-tuple, the tuple aaa with [ i← b ], with 0 ≤ i < m, is equal to aaa in
every index except in i where it has the value b.

Algorithms for conflict detection considered in this paper use a 3D flat earth
projection of the airspace. Aircraft positions and velocities in this 3D rectangular
coordinate system are represented in PVS as 3-tuples in R3, where the first and
second components denote the horizontal plane and the third component denotes
the vertical dimension. Such tuples are appropriately called vectors. Components
of vectors are sub-indicated by x, y, and z instead of 0, 1, and 2. Furthermore,
if w is the vector (wx, wy, wz), then w(x,y) denotes the projection of w in the
horizontal plane, i.e., w(x,y) = (wx, wy), and w⊥ denotes the vector (wy,−wx, wz).
The notation ‖w‖ refers to the norm of the vector w and the notation w ·w′ refers
to the dot product of the vectors w and w′.

The work presented in this paper is part of a research project by the authors
that aims at the development of verification technology for global optimization
problems.2 This research project includes the development of a PVS library for
Bernstein polynomials, which is available as part of the PVS NASA Libraries.3

3 Conflict Detection

This section provides a mathematical description of aircraft conflicts for arbitrary
trajectories and discusses how the problem of detecting aircraft conflicts can be
expressed as a global optimization problem. Since conflicts between multiple air-
craft can be detected in a pairwise fashion, only two aircraft are considered. These
two aircraft are referred to as the ownship and the intruder.

The airspace volume is modeled using a flat-earth projection in a 3D rectangu-
lar system, i.e., aircraft positions are viewed as points in R3. In this airspace, the
separation requirement between two aircraft is specified as a minimum horizontal
separation D and a minimum vertical separation H. Typically, D is 5 nautical
miles and H is 1000 feet [13]. In this paper, D and H are considered to be known
numerical constants. The separation requirement can be understood as an imagi-
nary horizontal cylinder, called protected zone, of height 2H and radius D around

2http://shemesh.larc.nasa.gov/people/cam/Bernstein.
3http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.
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Figure 1: Loss of Separation

the intruder aircraft.
A loss of separation between the ownship and the intruder aircraft occurs when

the horizontal distance between the aircraft is less than D and the vertical distance
is less than H, i.e., when the ownship is in the interior of the intruder’s protected
zone. Let so ∈ R3 and si ∈ R3 be the current positions of the ownship and intruder
aircraft, respectively. Formally, the ownship and intruder aircraft are said to be
in loss of separation if the following predicate on D, H, so, and si, holds.

los?(D,H, so, si) ≡ |sz| <H and ‖s(x,y)‖ < D,where s = so − si.

Loss of separtion is illustrated by Figure 1.

3.1 Trajectories

An aircraft trajectory represents the set of possible positions for the aircraft within
a lookahead time T according to some state estimation model [8]. As in the case
of D and H, T is assumed to be a known numerical constant.

A state estimation model for CD&R systems may be as simple as a linear
projection of the current position at the current constant speed. More compli-
cated models consider uncertainties in the aircraft state due to aircraft dynamics,
weather patterns, and other factors. In this paper, an aircraft trajectory is a con-
tinuous function of type Rm → R3, where the first variable in Rm represents time
and it is bounded by the time interval [0, T ]. The other variables in Rm represent
uncertainties and are assumed to be bounded as well. Given xxx ∈ Rm, the output
of a trajectory evaluated at xxx is a point in R3 that represents a 3-D position for the
aircraft. The following examples give formal definitions of trajectories for several
types of state estimation models.
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Figure 2: Linear Trajectory

Example 1 (Linear Dynamics Without Uncertainty). The simplest trajectory
model for an aircraft is a linear projection of its current position s ∈ R3 along
its current velocity v ∈ R3. This type of trajectory can be represented by the
parametric function linears,v : R→ R3, with parameters s and v, defined by

linears,v(t) ≡ s + t v. (1)

In this case, Rm = R, i.e., m = 1, and the variable t ∈ [0, T ] represents time. This
linear trajectory is illustrated by Figure 2.

Example 2 (Linear Dynamics With Cross-Track Uncertainty). In Example 1, the
position at time t of an aircraft along a linear trajectory at constant speed is given
by linears,v(t), where s and v are the initial position and velocity vector of the
aircraft. Uncertainty in the horizontal position of the aircraft is known as cross-
track uncertainty [7]. If this uncertainty is bounded by some distance Ev, then the
difference between the actual position and the position only considering cross-track
uncertainty at any time is given by x Ev

‖v(x,y)‖
v⊥, for some x ∈ [−1, 1]. This dif-

ference vector is perpendicular to the initial velocity of the aircraft. Considering
cross-track uncertainty, the trajectory of an aircraft along a linear path can be rep-
resented by the parametric function linearuncs,v,Ev : R3 → R3, with parameters
s, v, and Ev, defined by

linearuncs,v,Ev(t, x) ≡ s + t v + x
Ev

‖v(x,y)‖
v⊥, (2)

where the variable t ∈ [0, T ] represents time and the variable x ∈ [−1, 1] repre-
sents the (often unknown) cross-track uncertainty. This trajectory is illustrated by
Figure 3.

Example 3 (Turn Dynamics Without Uncertainty). During a steady coordinated
turn without friction, the position of an aircraft will follow a circle of radius ν2

g tanφ ,
where ν is the true air speed, g is the acceleration of gravity, and φ is the bank angle
of the aircraft. Thus, the trajectory of an aircraft during a turn can be represented
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Figure 3: Linear Trajectory with Cross-Track Uncertainty

Figure 4: Turning Trajectory for Constant Bank-Angle

by the parametric function turns,R,α,ω,vz : R→ R, with parameters s, R, α, ω, and
vz, defined by

turns,R,α,ω,vz(t) ≡ s + (R sin(α+ t ω), R cos(α+ t ω), t vz), (3)

where s is the center point of the turn, ω = ±g tan φ
ν , α is the angle along the

turn at time zero, R = ν2

g tanφ , and vz is the vertical speed. The variable t ∈ [0, T ]
represents time. This trajectory is illustrated by Figure 4.

Example 4 (Turn Dynamics With Wind and Altitude Uncertainty). In Exam-
ple 3, the position at time t of an aircraft in a steady turn is given by turnν,g,φ,s,α(t).
In the event of a wind where its speed components are varying between 0 and Ew
and assuming that the uncertainty in the altitude of the aircraft is bounded by Ea,
the trajectory of an aircraft during a steady turn can be represented by the para-
metric function windturns,R,α,ω,vz ,Ew,Ea : R4 → R3, with parameters s, R, α, ω,
vz, Ew, and Ea, defined by

windturns,R,α,ω,vz ,Ew,Ea(t, x, y, z) ≡ turns,R,α,ω,vz(t)+
(t xEw, t y Ew, z Ea),

(4)
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Figure 5: Turning Trajectory with Wind Uncertainty

where the variable t ∈ [0, T ] represents time, the variables x, y ∈ [−1, 1] represent
wind uncertainty, and the variable z ∈ [−1, 1] represents altitude uncertainty. A
top-down view of this trajectory is is illustrated by Figure 5.

As illustrated by these examples, the first variable in a trajectory function
represents time and is bounded by [0, T ]. If the trajectory function has more than
one variable in the domain, the other variables are bounded in predetermined
intervals as well. For instance, in Example 2 the variables x and y, representing
along-track and cross-track errors, are bounded in the interval [−1, 1].

Trajectories for the ownship and intruder aircraft are denoted by Po and Pi,
respectively. Without loss of generality, it can be assumed that these trajectories
have the same variables, that is, they are both functions of type Rm → R3. Indeed,
if one trajectory has arguments that are not used by the other trajectory, the
other trajectory can be written as a function on its own arguments and those
extra arguments as well. For instance, the trajectory turns,R,α,ω,vz , which has the
type R → R3, can be trivially extended to a trajectory of type R4 → R3, the
same type as windturns,R,α,ω,vz ,Ew,Ea , by defining turn′s,R,α,ω,vz ,Ew,Ea

(t, x, y, z) ≡
turns,R,α,ω,vz(t).

3.2 Conflicts and Conflict Detection Algorithms

While loss of separation is formalized as a predicate on two aircraft positions so and
si, a conflict between two aircraft is formalized as a predicate on the ownship and
intruder trajectories, Po and Pi in Rm → R3, respectively, and a box [aaa,bbb] ∈ Rm

that represents a range of interest in Rm, e.g., time should be in [0, T ]. The
trajectories Po and Pi are in conflict on the box [aaa,bbb] if there exists a point xxx ∈ [aaa,bbb]
such that the positions Po(xxx) and Pi(xxx) are in loss of separation:

conflict?(D,H,aaa,bbb, Po, Pi) ≡ ∃xxx ∈ [aaa,bbb] : los?(D,H,Po(xxx), Pi(xxx)). (5)
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Figure 6: Conflict and Conflict-Free Scenarios

Figure 6 illustrates conflict and conflict-free scenarios in a relative coordinate sys-
tem, where the intruder is at the origin of the system and the ownship is moving
relative to the intruder. In each scenario, the “tube” in front of the ownship rep-
resents the relative trajectory of the aircraft for a given box [aaa,bbb] ∈ Rm, where the
first component in the box the time interval [0, T ]. When Rm = R, i.e., m = 1,
the relative trajectory is a just a line.

An algorithm used by an aircraft to detect conflicts with another aircraft is
called a conflict detection algorithm. In this paper, a conflict detection algorithm
is a function cd that takes as inputs D, H, aaa, bbb, Po, and Pi and returns an element
of type CDOutcome, with possible values LossAt(ccc), where ccc ∈ [aaa,bbb], NoConflict,
and Unknown.

Formally, a conflict detection algorithm cd is sound if for all positive real num-
bers D,H, boxes [aaa,bbb], and trajectories Po, Pi, cd(D,H,aaa,bbb, Po, Pi) = NoConflict
implies that ¬conflict?(D,H,aaa,bbb, Po, Pi) hold; it is complete if cd(aaa,bbb, Po, Pi) =
LossAt(ccc) for some ccc ∈ [aaa,bbb] implies that conflict?(D,H,aaa,bbb, Po, Pi) holds. An
algorithm that is sound and complete is said to be correct. It is clear from the def-
inition that correctness is a key safety property for a conflict detection algorithm.

3.3 Conflict Detection and Global Optimization

Conflict between two trajectories can be written as an optimization problem and
hence global optimization methods can be used for conflict detection. This problem
transformation is accomplished through the cylindrical norm, which is described
in detail in [11]. The cylindrical norm of a vector w is the quantity

‖w‖D,H ≡ max
(
|wz|
H

,
‖w(x,y)‖

D

)
. (6)
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With this length, R3 is a metric space in the sense of real analysis [21], and
it therefore satisfies the triangle inequality. The following lemma and theorems
follow directly from definitions.

Lemma 1. The ownship and the intruder, which have position vectors so and si,
are in loss of separation, i.e. los?(D,H, so, si) holds, if and only if ‖so−si‖D,H < 1.

Instead of the cylindrical norm, which involves the square root and absolute
value functions, the square of the cylindrical norm is considered. The function
‖w‖2D,H , defined as follows

‖w‖2D,H ≡ max

(
w2
z

H2
,
w2
x + w2

y

D2

)
,

is a maximum of two polynomials, the first in wz, and the second in wx and
wy. The following theorem shows that conflict between two trajectories can be
expressed using this function.

Theorem 1. For all boxes [aaa,bbb], positive constant values D and H, and trajectories
Po and Pi, conflict?(D,H,aaa,bbb, Po, Pi) holds if and only if there exists xxx ∈ [aaa,bbb] such
that sqdistD,H,Po,Pi

(xxx) < 1, where

sqdistD,H,Po,Pi
(xxx) ≡ max

(
w2
z

H2
,
w2
x + w2

y

D2

)
,with w = Po(xxx)− Pi(xxx). (7)

When both Po and Pi are polynomial trajectories, as in the cases of Exam-
ple 1 and Example 2, the parametric function sqdist is defined as the maximum
between two polynomials. If the trajectories are not polynomials, such as the tra-
jectories in Example 3 and Example 4, since these functions are continuous on
[aaa,bbb] they can be uniformly approximated by polynomials to any given precision.
This result is known as the Weierstrass Approximation Theorem [9].

The predicate approx? specifies whether a given trajectory P is approximated
by a trajectory P ′ on the box [aaa,bbb] by a horizontal precision εD ≥ 0 and a vertical
precision εH ≥ 0.

approx?(aaa,bbb, εD, εH , P, P ′) ≡ ∀xxx ∈ [aaa,bbb] : |P (xxx)z − P ′(xxx)z| < εH and
‖P (xxx)(x,y) − P ′(xxx)(x,y)‖ < εD.

If it is known that the trajectories P ′o and P ′i , which are approximations of Po
and Pi, respectively, are in conflict, then it is possible to determine if Po and Pi are
in conflict as well. This determination can done by considering the effect that the
differences between these trajectories and their approximations have on the output
of the function sqdist. This effect is captured in the following proposition, which
can be proved by basic algebraic manipulations.
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Proposition 1. Let [aaa,bbb], Po, P ′o, Pi, P
′
i , εD = εoD + εiD, and εH = εoH + εiH ,

be such that approx?(aaa,bbb, εoD, εoH , Po, P ′o) and approx?(aaa,bbb, εiD, εiH , Pi, P ′i ) hold.
Then, for all xxx ∈ [aaa,bbb],

1. sqdistD,H,P ′o,P ′i
(xxx) < 1− δ−(D,H, εD, εH) implies sqdistD,H,Po,Pi

(xxx) < 1,

2. sqdistD,H,P ′o,P ′i
(xxx) ≥ 1 + δ+(D,H, εD, εH) implies sqdistD,H,Po,Pi

(xxx) ≥ 1,

where

δ−(D,H, εD, εH) ≡ max(2
εD
D
−
ε2
D

D2
, 2
εH
H
−
ε2
H

H2
),

δ+(D,H, εD, εH) ≡ max(2
εD
D

+
ε2
D

D2
, 2
εH
H

+
ε2
H

H2
).

(8)

The next result follows directly from Theorem 1 and Proposition 1. It shows
that if Po and Pi are trajectories that are approximated by P ′o and P ′i , then range
information for the function sqdistD,H,P ′o,P ′i can be used to detect conflict between
Po and Pi. This result will be directly used later to detect conflicts between Po
and Pi, when P ′o and P ′i are polynomial trajectories, by approximating the range
of sqdistD,H,P ′o,P ′i . Since any trajectory can be uniformly approximated by poly-
nomial trajectories, conflict detection for arbitrary trajectories can be reduced to
computing range information for the function sqdistD,H,P ′o,P ′i for some polynomial
trajectories P ′o and P ′i .

Proposition 2. If approx?(aaa,bbb, εoD, εoH , Po, P ′o) and approx?(aaa,bbb, εiD, εiH , Pi, P ′i ),
then

1. If ccc is a point in the box [aaa,bbb] and sqdistD,H,P ′o,P ′i
(ccc) < 1−δ−(D,H, εD, εH),

then conflict?(D,H,aaa,bbb, Po, Pi).

2. conflict?(D,H,aaa,bbb, Po, Pi) implies sqdistD,H,P ′o,P ′i (xxx) ≤ 1+δ+(D,H, εD, εH)
for some xxx ∈ [aaa,bbb],

Numerical approximation methods based on Bernstein polynomials are well-
known by the global optimization community [3]. The next section describes a
formalization of Bernstein polynomials in PVS, from an algorithmic point of view.
A formally verified algorithm for finding range information for the maximum and
minimum values of a function defined as the maximum of two polynomials is
presented in §5. That algorithm is used in verified algorithms for conflict detection
of arbitrary trajectories, proposed in §6, the correctness of which follows from
Proposition 2.
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4 Formalization of Bernstein Polynomials

Bernstein polynomials are mathematical objects used to approximate continuous
functions. This section presents an algorithmic formalization of multivariate Bern-
stein polynomials and their main properties. All properties presented in this sec-
tion have been formally proved in the PVS theorem prover for both univariate and
multivariate polynomials.

Let iii be an m-tuple of natural numbers and xxx be an m-tuple of variables over
R. The product xxxiii = xi00 ·. . .·x

im−1

m−1 is called an m-variable monomial. The m-tuple
iii is called the index of the monomial xxxiii. An m-variable polynomial of degree nnn is
a finite sum of the form

p(xxx) =
∑
iii≤nnn

ciiixxx
iii,

where the elements ciii ∈ R are called the coefficients of p. In PVS, an m-polynomial
p is represented by a function from Rm into R.

Let p(xxx) =
∑

iii≤nnn ciiixxx
iii be an m-variable polynomial. For any bounded box

[aaa,bbb], the m-polynomial p[aaa,bbb] can be defined as follows

p[aaa,bbb](xxx) ≡
∑
kkk≤nnn

∑
kkk≤iii≤nnn

(ciii
m−1∏
j=0

(
ij
kj

)
(bj − aj)kja

ij−kj

j )xxxkkk. (9)

The following proposition states that any multivariate polynomial on an arbi-
trary box can be transformed into a polynomial on the unit box.

Proposition 3. Let [aaa,bbb] be a bounded box and p an m-polynomial, For all xxx ∈
[000,111], p(σ[aaa,bbb](xxx)) = p[aaa,bbb](xxx), where

σ[aaa,bbb](xxx)j ≡ aj + xj(bj − aj). (10)

Furthermore, since σ[aaa,bbb] is a bijection, for all yyy ∈ [aaa,bbb], p(yyy) = p[aaa,bbb](σ
−1
[aaa,bbb](yyy)).

The inverse σ−1
[aaa,bbb] is given on the j-th component by σ−1

[aaa,bbb](yyy)j = yj−aj

bj−aj
.

The PVS formalization provides a function translate that takes as inputs the
arrays aaa and bbb, and an m-polynomial p, and returns the polynomial p[aaa,bbb] defined
by Formula (9). Proposition 3 implies that the equalities

p(σ[aaa,bbb](xxx)) = translate(aaa,bbb, p)(xxx),

p(yyy) = translate(aaa,bbb, p)(σ−1
[aaa,bbb](yyy)),

hold for all xxx and yyy. It follows directly from this that the maximum (resp. mini-
mum) value attained by p on the box [aaa,bbb] is the maximum (resp. minimum) value
attained by the polynomial translate(aaa,bbb, p) on the unit box.
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4.1 Bernstein Basis

An m-variable Bernstein polynomial is an m-variable polynomial of the form

p(xxx) =
∑
iii≤nnn

b̂iiiBnnn,iii(xxx), (11)

where b̂iii ∈ R and

Bnnn,iii(xxx) ≡
m−1∏
j=0

(
nj
ij

)
x
ij
j (1− xj)nj−ij . (12)

The coefficients b̂iii are called the Bernstein coefficients of p.
Proposition 4 states that any polynomial can be written as a polynomial in

Bernstein form by a simple transformation. Thus, the m-variable polynomials
Bnnn,iii(xxx) in Formula (12) form a basis for the vector space of m-variable polynomials
of degree at least nnn.

Proposition 4. Any m-variable polynomial p(xxx) =
∑

iii≤nnn ciiixxx
iii can be written in

Bernstein form as p(xxx) =
∑

kkk≤nnn b̂kkk Bnnn,kkk(xxx), where

b̂kkk ≡
∑
iii≤kkk

(
ciii

m−1∏
j=0

(kj

ij

)(nj

ij

)).
In PVS, m-variable polynomials in Bernstein form are represented using the

data structure proposed by Smith in [22]. The technical details of that represen-
tation are outside the scope of this paper. Since the method presented in this
paper does not depend on a particular representation of polynomials, it suffices
to say that the PVS formalization provides a function tomultibern that takes an
m-variable polynomial p as input and returns an element of a particular data struc-
ture that represents the Bernstein form of p given by Proposition 4. Furthermore,
a function eval that takes as inputs a representation of an m-variable polynomial
in Bernstein form and an m-tuple xxx, and returns a real number is defined such
that for all xxx ∈ Rm,

eval(tomultibern(p),xxx) = p(xxx). (13)

4.2 Properties of Bernstein Polynomials

A key result that makes Bernstein polynomials useful for proving polynomial in-
equalities is that the Bernstein coefficients of a polynomial provide lower and upper
bounds for the values of the polynomial over the unit box.
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Proposition 5. Let p(xxx) =
∑

iii≤nnn b̂iiiBnnn,iii(xxx) be an m-variable polynomial in Bern-
stein form, r be a real number, and < be a real order in {≤, <,≥, >}. If b̂iii < r,
for all iii ≤ nnn, then p(xxx) < r, for all xxx ∈ [000,111].

Another useful property of Bernstein polynomials is that the values of the
function at the endpoints of the unit box are Bernstein coefficients of the polyno-
mial. Let nnn be an m-tuple of natural numbers. The set Cnnn of m-tuples of natural
numbers denotes the endpoint indices of nnn and it is defined as follows.

Cnnn ≡ {iii ≤ nnn | ∀ 0 ≤ j < m : ij = 0 or ij = nj}. (14)

Proposition 6. Let x̄xx be an m-tuple such that x̄j = 0 or x̄j = 1 for all 0 ≤
j < m. Given an m-tuple nnn of natural numbers, define īii ∈ Cnnn by īj = 0 if
x̄j = 0 and īj = nj if x̄j = 1. For any m-variable polynomial in Bernstein form
p(xxx) =

∑
iii≤nnn b̂iiiBnnn,iii(xxx), p(x̄xx) = b̂īii.

By Proposition 5 and Proposition 6, the following inequalites hold.

min
iii≤nnn

b̂iii ≤ min
xxx∈[000,111]

p(xxx) ≤ min
iii∈Cnnn

b̂iii,

max
iii∈Cnnn

b̂iii ≤ max
xxx∈[000,111]

p(xxx) ≤ max
iii≤nnn

b̂iii.
(15)

The record type

Outminmax ≡ lbmin : real× lbmax : real× lbvar : Rm+ ×
ubmax : real× lbmin : real× ubvar : Rm+,

defined in PVS, stores information about the range of a function f : Rm → R over
a given box. The type Rm+ is the type of points in Rm extended with special value
that represents an empty tuple. The intended semantics of the type Outminmax is
given by the predicate sound?. This predicate is defined on a function f : Rm → R,
an element omm of type Outminmax, and a box [aaa,bbb] such that sound?(f, omm, aaa,bbb)
holds if and only if

• minxxx∈[aaa,bbb] f(xxx) ∈ [omm.lbmin, omm.lbmax], f(omm.lbvar) = omm.lbmax, and

• maxxxx∈[aaa,bbb] f(xxx) ∈ [omm.ubmin, omm.ubmax], f(omm.ubvar) = omm.ubmin.

Thus, if sound?(f, omm, aaa,bbb) holds, then omm provides bounds on the minimum and
maximum values of f on [aaa,bbb].

The PVS formalization provides a function berncoeffsminmax that takes as
input a representation of an m-variable polynomial in Bernstein form p(xxx) =∑

iii≤nnn b̂iiiBnnn,iii(xxx) and returns an element omm of type Outminmax such that
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• omm.lbmin = miniii≤nnn b̂iii, omm.lbmax = miniii∈Cnnn b̂iii, p(omm.lbvar) = lbmax, and

• omm.ubmin = maxiii∈Cnnn b̂iii, omm.ubmax = maxiii≤nnn b̂iii, p(omm.ubvar) = lbmin.

The next proposition follows directly from the definition of berncoeffsminmax,
Proposition 6, Proposition 4, and Formula (15).

Proposition 7. For any m-variable polynomial p,

sound?(p, berncoeffsminmax(tomultibern(p)),000,111)

holds.

Proposition 3 implies that the range of an m-variable polynomial p on the box
[aaa,bbb] corresponds to the range of the m-variable polynomial in Bernstein form
represented by tomultibern(translate(aaa,bbb, p)) on the unit box [000,111]. When
berncoeffsminmax is evaluated on this representation, the fields lbvar and ubvar
of the resulting element of type Outminmax are points in [000,111] where the m-variable
polynomial p attains the values lbmax and ubmin, respectively. Proposition 4 and
Formula (13) imply that for any m-tuple xxx in the unit box,

eval(tomultibern(translate(aaa,bbb, p),xxx) = translate(aaa,bbb, p)(xxx).

Therefore, Formula (10) and Formula (13) imply that the equations

eval(tomultibern(translate(aaa,bbb, p), lbvar) = p(σ[aaa,bbb](lbvar)),

eval(tomultibern(translate(aaa,bbb, p), ubvar) = p(σ[aaa,bbb](ubvar))

both hold.

Proposition 8. For any m-variable polynomial p and box [aaa,bbb], if

omm = berncoeffsminmax(tomultibern(translate(aaa,bbb, p))),

then sound?(p, denorm omm(omm, aaa,bbb), aaa,bbb) holds, where

denorm omm(omm, aaa,bbb) ≡ omm with [ lbvar← σ[aaa,bbb](omm.lbvar),

ubvar← σ[aaa,bbb](omm.ubvar) ].

According to Proposition 8, the range information for a polynomial p over an
arbitrary box [aaa,bbb] can be computed using the functions translate, tomultibern,
berncoeffsminmax, and denorm omm.
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4.3 Domain Subdivision

The reciprocal implication of Proposition 5 does not hold in general, i.e., the
fact that a polynomial inequality holds on the unit box does not imply that the
Bernstein coefficients of the polynomial satisfy the same inequality. In particular,
the lower and upper bounds of the minimum and maximum values of a polynomial
on a bounded box given by Formula (15) are not always exact. There is, however,
a method that can be used to significantly improve the accuracy of the estimates
for the minimum and maximum values of a multivariate polynomial p in a bounded
box [aaa,bbb]. The basic idea is to subdivide [aaa,bbb] into two boxes by picking a variable
xj , where j < m, and consider the case where aj ≤ xj ≤ aj+bj

2 separately from
the case where aj+bj

2 ≤ xj ≤ bj . This method can be used recursively to compute
arbitrarily precise bounds of the minimum and maximum values of the polynomial
on [aaa,bbb].

An important feature of the subdivision method is that the Bernstein coeffi-
cients arising from the polynomial on the two subdivided intervals can be computed
directly from the Bernstein coefficients of the original polynomial. Since the func-
tions λx : x

2 and λx : x+1
2 are bijections from [0, 1] into [0, 1

2 ] and [1
2 , 1], respectively,

the Bernstein coefficients of a polynomial p on the boxes [000,111 with [ j ← 1
2 ]] and

[000 with [ j ← 1
2 ],111] are the Bernstein coefficients of the polynomials p(xxx with [ j ←

xj

2 ]) and p(xxx with [ j ← xj+1
2 ]), respectively. The de Casteljau algorithm [4]

is commonly used to compute the Bernstein forms of p(xxx with [ j ← xj

2 ]) and
p(xxx with [ j ← xj+1

2 ]). In this paper, a simpler variant of the de Casteljau al-
gorithm is presented. In this variant, the Bernstein coefficients are computed by
expanding the definitions of these polynomials.

Proposition 9. Let p(xxx) =
∑

iii≤nnn b̂iiiBnnn,iii(xxx) be an m-variable polynomial in Bern-
stein form. For all j < m, p(xxx with [ j ← xj

2 ]) =
∑

kkk≤nnn b̂
L
kkk Bnnn,kkk(xxx), where

b̂Lkkk ≡
kj∑
r=0

1
2kj

(
kj
r

)
b̂kkk with [ j←r ],

and p(xxx with [ j ← xj+1
2 ]) =

∑
kkk≤nnn b̂

R
kkk Bnnn,kkk(xxx), where

b̂Rkkk ≡
nj−kj∑
r=0

1
2nj−kj

(
nj − kj

r

)
b̂kkk with [ j←nj−r ].

In PVS, functions subdivl and subdivr are defined that take as inputs a
representation of an m-variable polynomial in Bernstein form p and an index j <
m, and return the representations of the m-variable polynomials in Bernstein form
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given in Proposition 9 for the polynomials p(xxx with [ j ← xj

2 ]) and p(xxx with [ j ←
xj+1

2 ]), respectively. The following proposition follows from Proposition 9 and
Formula (13).

Proposition 10. For any m-variable polynomial p and for all xxx ∈ Rm,

eval(subdivl(tomultibern(p), j)(xxx) = p(xxx with [ j ← xj
2

]),

eval(subdivr(tomultibern(p), j)(xxx) = p(xxx with [ j ← xj + 1
2

]).

The functions subdivl and subdivr can be used to improve the accuracy of
the estimates for the minimum and maximum values of a polynomial in Bernstein
form p on the unit box. This result is captured in the following proposition, the
proof of which follows directly from Proposition 5 and Proposition 9.

Proposition 11. Let p(xxx) =
∑

iii≤nnn b̂iiiBnnn,iii(xxx) be an m-variable polynomial in
Bernstein form, K be a real number, and < be a real order in {≤, <,≥, >}. If
b̂Liii < K and b̂Riii < K, for all iii ≤ nnn, then p(xxx) < K, for all xxx ∈ [000,111].

The function berncoeffsminmax, when applied to subdivl(tomultibern(p), j)
and subdivr(tomultibern(p), j), returns elements of type Outminmax that repre-
sent range information for the polynomial p on the “left” and “right” (in the j-
th variable) halves of the unit box, respectively. The function combine is used
to aggregate the information from these elements of Outminmax into one ele-
ment of Outminmax that represents range information for the polynomial p on
the entire unit box [000,111]. Given elements omm1 and omm2 of type Outminmax,
combine(omm1, omm2) returns an element omm that satisfies

• omm.lbmin = min(omm1.lbmin, omm2.lbmin),

• omm.lbmax = min(omm1.lbmax, omm2.lbmax),

• omm.lbvar is omm1.lbvar if omm.lbmax = omm1.lbmax, otherwise omm.lbvar =
omm2.lbvar,

• omm.ubmin = max(omm1.ubmin, omm2.ubmin),

• omm.ubmax = max(omm1.ubmax, omm2.ubmax), and

• omm.ubvar is omm1.ubvar if omm.ubmax = omm1.ubmax, otherwise omm.ubvar =
omm2.ubvar.
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Let p be a polynomial in Bernstein form that represents the polynomial p, i.e.,
p = tomultibern(p). It is not true that combining the outputs of subdivl(p, j)
and subdivr(p, j) produces an element of Outminmax that satisfies the predicate
sound?. The fields lbvar and ubvar in omml = berncoeffsminmax(subdivl(p, j))
and ommr = berncoeffsminmax(subdivr(p, j)) are points in the unit box where
the polynomials represented by subdivl(p, j) and subdivr(p, j) attain the values
lbmax and ubmin, respectively. However, each of these polynomials represents p on
only half of the unit box [000,111]. Thus, the fields omml.lbvar, omml.ubvar, ommr.lbvar,
and ommr.ubvar have to be translated from [000,111] back to their respective half
intervals for the predicate sound? to hold. This translation is accomplished through
the functions update and updateOutminmax. The function update takes as inputs
a tuple ccc ∈ Rm, a function u : R → R, and a variable index j < m. It returns a
tuple that is equal to ccc in all components but the j-th component where it has the
value u(cj), i.e.,

update(ccc, u, j) ≡ ccc with [ j ← u(cj) ].

The function updateOutminmax takes an element omm of type Outminmax, a func-
tion u : R → R, and a variable index j < m as inputs. It updates the j-th
components of the m-tuples omm.lbvar and omm.ubvar using the function u:

updateOutminmax(omm, u, j) ≡ omm with [ lbvar← update(omm.lbvar, u, j),
ubvar← update(omm.ubvar, u, j) ].

Proposition 12. For any m-variable polynomial p, variable index j < m, and
elements omml, ommr of type Outminmax such that

omml = updateOutminmax(subdivl(tomultibern(p), j), λx :
x

2
, j),

ommr = updateOutminmax(subdivr(tomultibern(p), j), λx :
x+ 1

2
, j),

sound?(p, combine(omml, ommr),000,111) holds.

5 The Maximum of Two Polynomials

If f and g are two functions from Rm into R, then the function max(f, g) from Rm

into R is defined by
max(f, g)(xxx) ≡ max(f(xxx), g(xxx)).

If the functions f and g are polynomials, then the function berncoeffsminmax
discussed in §4.2 can be used to compute an element of Outminmax that satisfies the
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predicate sound? on the unit box for the function max(f, g). This is accomplished
through the function

max bc minmax(p, q) ≡ combine max(berncoeffsminmax(p),
berncoeffsminmax(q)),

where p = tomultibern(f) and q = tomultibern(g). In the definition of this
function, berncoeffsminmax is used to compute two elements of Outminmax that
contain range information for f and g on [000,111]. The function combine max then
computes the worst case scenario for the range of the function max(f, g) on [000,111],
and it is defined as follows.

combine max(omm1, omm2) ≡


omm1 if omm1.lbmin ≥ omm2.ubmax,
omm2 if omm2.lbmin > omm1.ubmax,
omm otherwise,

where omm.lbmin = min(omm1.lbmin, omm2.lbmin), omm.lbmax = 0, omm.ubmin = 0,
omm.ubmax = max(omm1.ubmax, omm2, ubmax), and both omm.lbvar and omm.ubvar
are set to empty.

Proposition 13. For any m-variable polynomials p and q,

sound?(max(p, q), max bc minmax(p, q),000,111)

holds, where p = tomultibern(p) and q = tomultibern(q).

Proposition 13 states that the function max bc minmax computes bounds on the
minimum and maximum values of the function max(p, q) in the unit box. Although
these bounds are correct, they may not be precise enough to determine whether a
relation such as max(p, q) ≥ K is satisfied for a given real number K. In this case,
Proposition 11 can be recursively applied to subdivide the unit box into smaller
intervals and compute estimates that are precise to any required approximation.

5.1 A Procedure For Checking max(p, q) ≥ K in [000,111]

The following procedure can be used to determine whether the maximum max(p, q)
of two m-variable polynomials p and q always takes a value of at least K on the
unit box [000,111].

1. Compute omm = max bc minmax(tomultibern(p), tomultibern(q)).

2. If omm.lbmin ≥ K, then the inequality max(p, q)(xxx) ≥ K holds for all xxx ∈
[000,111]. The procedure exits with success.
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3. If omm.lbmax < K, then the inequality max(p, q)(ccc) < K holds for ccc =
omm.lbvar ∈ [000,111]. The procedure exits with failure, with ccc as counterexam-
ple.

4. Otherwise, choose any 0 ≤ j < m and recursively apply this procedure to
determine whether

(a) max(p, q)(xxx with [ j ← xj

2 ]) ≥ K and

(b) max(p, q)(xxx with [ j ← xj+1
2 ]) ≥ K,

for all xxx ∈ [000,111].

• If both Step 4a and Step 4b exit with success, then, by Proposition 11,
the inequality max(p, q)(xxx) ≥ K holds for all xxx ∈ [000,111]. The procedure
exits with success.

• If Step 4a exits with failure with counterexample ccc, then the inequality
max(p, q)(cccl) < K holds, where cccl = ccc with [ j ← xj

2 ] ∈ [000,111]. The
process exits with failure, with cccl as counterexample.

• If Step 4b exits with failure with counterexample ccc, then the inequality
max(p, q)(cccr) < K holds, where cccr = ccc with [ j ← xj+1

2 ] ∈ [000,111]. The
process exits with failure, with cccr as counterexample.

It should be noted that the procedure above does not necessarily terminate.
However, at each recursive step, the interval [omm.lbmin, omm.lbmax], which con-
tains the minimum value of max(p, q) over the unit box [000,111], gets smaller.

Given m-variable polynomials p and q and a real number K, the procedure
above can also be used to determine whether the inequality max(p, q)(xxx) ≥ K holds
for all xxx ∈ [aaa,bbb]. In this case, the procedure is used with the m-variable polynomials
p[aaa,bbb] = translate(aaa,bbb, p) and q[aaa,bbb] = translate(aaa,bbb, q). If the procedure exits
with success, then the inequality max(p, q)(xxx) ≥ K holds for all xxx ∈ [aaa,bbb]. If the
procedure exits with failure with counterexample ccc, the inequality max(p, q)(ccc′) <
K holds, where ccc′ = σ[aaa,bbb](ccc).

The complexity of the procedure is exponential in the number of variables.
However, some heuristics can be used to greatly speed this procedure [15, 19, 22].
For instance, Step 4 involves applying the procedure recursively on the left and
right hand sides of the unit box. However, if the procedure is run for the left
(resp. right) side of the unit box first, in some cases, it may not be necessary to
run it for the right (resp. left) hand side at all. An example of this is when the
recursive call on the right (resp. left) hand side exits with failure with a counter
example ccc. In this case, ccc is also a counterexample for the larger box, so running
the procedure on the left (resp. right) hand side of the box is not necessary. There
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are also heuristics for the selection of the variable j in Step 4 and of the order in
which Step 4a and Step 4b are performed. These heuristics improve the efficiency
of the procedure by pruning the execution tree generated by the recursive calls in
Step 4.

5.2 The Algorithm bernMinmax

This section describes a formally verified algorithm, which is based on the pro-
cedure presented in §5.1, that computes range information for the minimum and
maximum values of a function defined as the maximum of two polynomials.

The function bernMinmax, defined in Figure 7, has as inputs representations p
and q of m-variable polynomials in Bernstein form p and q, respectively, a maxi-
mum recursion depth N ∈ N, and the current recursion depth i ≤ N. Additional
inputs include a function varsel that selects the variable on which to subdivide
at each iteration and which direction to explore first, predicates localex and
globalex on the output type that cause the algorithm to exit locally and globally,
respectively, and a parameter omm of the same type as the output value. These
additional inputs allow for the use of heuristics based on a particular variable se-
lection method, direction of recursion, and strategy for early termination. They
are described in §5.4.

The function bernMinmax returns a record of type Outminmax. Assuming that
bmm = max bc minmax(p, q) as in Line 1 of this function, if the condition in Line 3
is true, then the function returns bmm. In this case, bmm will satisfy either localex
or globalex, except when the maximum depth has been reached, i.e., i = N, or
when the execution tree is pruned by the condition between(omm, bmm).

If the condition in Line 3 is false, then the function varsel is used to select a
variable to subdivide and a direction (left or right) for each one of the polynomi-
als. It is important to note that the function varsel is an input to bernMinmax,
so it can handle any subdivision scheme. Next, the domain subdivision func-
tions subdivl and subdivr presented in §4.3, are used to subdivide the unit box
[000,111] into smaller sub-boxes. At each subdivision, the function max bc minmax is
recursively called to compute an element of Outminmax that stores information
about the ranges of the polynomials on the given sub-box. Using this function,
two elements bmm1 and bmm2 of Outminmax are produced; one representing range
information for the box [000,111 with [ j ← 1

2 ]] and the other representing range in-
formation for the box [000 with [ j ← 1

2 ],111]. The algorithm effectively stops when
the predicate globalex is satisfied after the first of the two recursive calls of the
function bernMinmax. This is acoomplished by the condition in Line 17. Since the
points represented by lbvar and ubvar are computed in a unit box, they must be
translated back to the half boxes from the full boxes in the function, by using the
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01 : bernMinmax(p, q, N, i, varsel, localex, globalex, omm) : Outminmax ≡
02 : let bmm = max bc minmax(p, q) in

03 : if i = N or localex(bmm) or (i > 0 and between(omm, bmm)) or

04 : globalex(bmm) then bmm

05 : else

06 : let (leftp, jp) = varsel(p, i),

07 : (leftq, jq) = varsel(q, i),

08 : (left, j) = if mod(i, 2) = 0 then (leftp, jp)

09 : else (leftq, jq) endif,

10 : (pl, pr) = (subdivl(p, j), subdivr(p, j)),

11 : (ql, qr) = (subdivl(q, j), subdivr(q, j)),

12 : (p1, p2) = if left then (pl, pr) else (pr, pl) endif,

13 : (q1, q2) = if left then (ql, qr) else (qr, ql) endif,

14 : σ = if left then λx : x/2 else λx : (x+ 1)/2 endif,

15 : omm = if i > 0 then combine(omm, bmm) else bmm endif,

16 : bmm1 = bernMinmax(p1, q1, N, i + 1, varsel, omm) in

17 : if globalex(bmm1) then

18 : combine(updateOutminmax(bmm1, σ, j), bmm)

19 : else

20 : let omm = combine(omm, bmm1),

21 : bmm2 = bernMinmax(p2, q2, N, i + 1, varsel, omm),

22 : bmmleft = if left then bmm1 else bmm2 endif,

23 : bmmright = if left then bmm2 else bmm1 endif in

24 : combine(updateOutminmax(bmmleft, λx : x/2, j),

25 : updateOutminmax(bmmright, λx : (x+ 1)/2, j))

26 : endif

27 : endif

Figure 7: The function bernMinmax
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function updateOutminmax.
If the condition in Line 17 is false, the two elements of type Outminmax resulting

from applying updateOutminmax to bmm1 and bmm2 are combined into a new element
of type Outminmax that represents the range information of the function max(p, q)
over the unit box.

The correctness property of the function bernMinmax states that it computes
an element of type Outminmax that bounds the range of the function max(p, q)
over the unit box. The following theorem has been proved in PVS by induction
on the structure of the definition of bernMinmax. Proposition 13 is used to prove
the base case. The inductive case is discharged by Proposition 12 in §4.3.

Theorem 2. For all m-variable polynomials p, q : Rm → R, N ∈ N, i ∈ N, with i ≤
N, varsel : N → boolean × N<m, localex, globalex : Outminmax → boolean,
and omm ∈ Outminmax, if bmm ∈ Outminmax is given by

bmm = bernMinmax(tomultibern(p), tomultibern(q), N, i, varsel, omm),

then

1. max(p, q)(bmm.lbvar) = bmm.lbmax,

2. max(p, q)(bmm.ubvar) = bmm.ubmin, and

3. bmm.lbmin ≤ max(p, q)(xxx) ≤ bmm.ubmax, for all xxx ∈ [000,111].

It is noted that Theorem 2 holds for all possible values of the input parameters
varsel, localex, globalex, and omm. These parameters are added for practical
and efficiency reasons. They are explained in §5.4.

5.3 Function polyMinmax

The function polyMinmax, defined in Figure 8, computes range information for the
maximum of two polynomials on an arbitrary box [aaa,bbb]. The algorithm works in
four steps:

1. Convert the polynomials from the box [aaa,bbb] to the unit box [000,111] using the
function translate defined by Formula (4) in §4.

2. Compute the Bernstein form of the translated polynomial using the function
tomultibern from §4.1.

3. Apply bernMinmax to compute an element bmm of Outminmax that gives range
information for the maximum of these two polynomials in Bernstein form
on the unit box.
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polyMinmax(p, q,aaa, bbb, N, varsel, localex, globalex) : Outminmax ≡
let p = tomultibern(translate(p,aaa, bbb)),

q = tomultibern(translate(q,aaa, bbb)),

omm = bernMinmax(p, q, N, 0, varsel, localex, globalex, emptymm)

in

denorm omm(omm, aaa, bbb)

Figure 8: The function polyMinmax

4. Translate omm from [000,111] back to [aaa,bbb] linearly using the function denorm omm
defined in §4.2.

The constant element emptymm of type Outminmax is defined such that all the
numerical fields are 0 and the m-tuples are empty. The following correctness
property of the function polyMinmax has been proved in PVS.

Theorem 3. For all m-variable polynomials p, q : Rm → R in standard form,
N ∈ N, varsel : N → boolean × N<m, and localex, globalex : Outminmax →
boolean, if omm ∈ Outminmax is given by

omm = polyMinmax(p, q,aaa,bbb, N, varsel, localex, globalex),

then

• max(p, q)(omm.lbvar) = omm.lbmax, max(p, q)(omm.ubvar) = omm.ubmin, and

• omm.lbmin ≤ max(p, q)(xxx) ≤ omm.ubmax, for all xxx ∈ [aaa,bbb].

According to Theorem 3, the range information computed by polyMinmax can
be used to check universally quantified propositions of the form

∀x ∈ [aaa,bbb] : max(p, q)(xxx) < K,

for any given m-variable polynomials p, q, constant value K, and real order relation
< ∈ {≥, >,≤, <}. If < is one of ≥ or >, it suffices to check whether omm.lbmin <K.
If < is one of ≤ or <, it suffices to check whether omm.ubmax < K. Furthermore,
since an existential proposition of the form “∃ccc ∈ [aaa,bbb] : max(p, q)(ccc) <K” is equiv-
alent to the negation of the universal proposition “∀xxx ∈ [aaa,bbb] : max(p, q)(xxx) ¬<K”,
the former type of existentially qualified propositions can also be checked using the
algorithm polyMinmax. In this case, the witness ccc is either omm.lbvar or omm.ubvar
depending on <.
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5.4 Parameters varsel, omm, localex, and globalex

The parameter varsel is used to determine two things: (1) Which variable to
subdivide at each recursive step, and (2) Whether to compute bounds to the left
or the right first in that variable. The algorithm takes as inputs a representation p
of an m-variable polynomial in Bernstein form p and a natural number i. It returns
a pair (left, j), where left is a Boolean value and j < m. The value left being
true means that the given variable should be subdivided to the left first, and j is a
natural number representing the index of the variable to be subdivided. The most
basic example of such a function is given by varsel(p, i) = (true, mod(m, i)),
which alternates the variables and always computes range information on the left
interval first. However, as noted in [15] and [19], there are much more efficient
methods for choosing these variables and directions, including several based on
derivatives. The function varsel is an input to the algorithm in PVS, so it can
facilitate any subdivision scheme. One method that has been implemented in
PVS is called MaxVarMinDir. This method chooses the variable for which the
range between the first and last Bernstein coefficients, when all other variables
are held constant, is greatest. In the algorithm bernMinmax, the function varsel
is called on both p and q, and the answer that is used alternates between these
answers.

The parameter omm is used for caching the current output of the algorithm.
The function between is defined as follows

between(omm, bmm) ≡ omm.lbmax ≤ bmm.lbmin and
bmm.ubmax ≤ omm.ubmin.

It tests whether the output bmm at the current recursive step can contribute any-
thing to the final output of the function once it is combined. At a given recursive
step in the algorithm, if between(omm, bmm) returns true, then the output bmm of
the current recursive step will not contribute to the overall output of the function
since between(omm, bmm) implies that combine(omm, bmm) = omm.

The predicates localex and globalex are used to prune the executing tree
depending on particular objectives. The predicate localex will be used to exit
the algorithm locally and continue to the next recursive step. While both of
these predicates are used in the algorithm to simply break recursion locally, the
predicate globalex will be chosen so that if recursion breaks because globalex
returns true, then every recursion above will also break, effectively resulting in
a global exit from the algorithm. For instance, to check propositions of the form
“∀xxx ∈ [aaa,bbb] : max(p, q)(xxx) ≥ K”, localex and globalex can be defined as follows.

localex(omm) ≡ omm.lbmin ≥ K,
globalex(omm) ≡ omm.lbmax < K.
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In this case, if a box satisfies the inequality, there is no need to subdivide the
box. On the other hand, if the negated inequality is satisfied by a point in the
box, the algorithm must exit since a counterexample to the universally quantified
inequality has been found.

6 Conflict Detection for Arbitrary Trajecto-

ries

It is noted in §3.3 that conflict detection between two trajectories Po and Pi over a
box [aaa,bbb] can be reduced to determining whether the function sqdistD,H,Po,Pi

ever
takes a value less than 1 on [aaa,bbb]. The function sqdistD,H,Po,Pi

is defined as the

maximum of the functions f(xxx) = w2
z

H2 and g(xxx) = w2
x+w2

y

D2 , where w = Po(xxx)−Pi(xxx).
The numerical constants D and H represent the minimum horizontal and vertical
separation between the aircraft, respectively.

If Po and Pi are polynomial functions, the functions f and g are also polyno-
mials, and therefore the function sqdistD,H,Po,Pi

is the maximum of two polyno-
mials. The next proposition follows from Theorem 1 in §3.3 and the definition of
the predicate sound?.

Proposition 14. If sound?(sqdistD,H,Po,Pi
, omm, aaa,bbb) holds, then

• If omm.lbmin ≥ 1, then conflict?(aaa,bbb, Po, Pi) does not hold.

• If omm.lbmax < 1, then conflict?(aaa,bbb, Po, Pi) holds, and conflict is attained
at the point lbvar, which is an element of [aaa,bbb].

According to Proposition 14 and Theorem 3 in §5, conflict between trajectories
Po and Po can be determined by using the algorithm polyMinmax defined in §5.3.
For this purpose, the local exit and global exit predicates used in the algorithm
bernMinmax can defined as follows.

cd localexit(omm) ≡ omm.lbmin ≥ 1,
cd globalexit(omm) ≡ omm.lbmax < 1.

Alternatively, if the trajectories Po and Pi are not defined by polynomials
but are approximated by polynomial trajectories P ′o and P ′i , the discussion in
Section 3.3, including Proposition 1, implies that conflict information for Po and
Pi can be computed by considering the function sqdistD,H,P ′o,P ′i , which is the
maximum of two polynomials. In this case, the local exit and global exit predicates
are parametric on D, H, εD, and εH , where εD and εH represent desired precisions
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in the horizontal and vertical dimensions as explained in §3.3. These parametric
predicates are defined as follows.

cd localexitD,H,εD,εH
(omm) ≡ omm.lbmin ≥ 1 + δ+(D,H, εD, εH),

cd globalexitD,H,εD,εH
(omm) ≡ omm.lbmax < 1− δ−(D,H, εD, εH),

where δ+(D,H, εD, εH) and δ−(D,H, εD, εH) are defined by Formula (8) in §3.3.
Based on these results, this section presents a formally verified conflict detec-

tion algorithm for arbitrary trajectories.

6.1 Verified Conflict Detection Algorithm

Suppose that Po and Pi are polynomial trajectories from Rm into R3. The al-
gorithm cd poly, in Figure 9, can be used to check whether these two trajecto-
ries are in conflict on a given box [aaa,bbb], i.e., whether conflict?(D,H,aaa,bbb, Po, Pi)
holds. The parametric function cd polyN,εD,εH

is a conflict detection algorithm
as defined in §3.2. It has as inputs positive real numbers D,H, a box [aaa,bbb], and
polynomial trajectories Po, Pi. It returns an element of type CDOutcome with the
values Unknown, NoConflict, or LossAt(ccc), where ccc ∈ [aaa,bbb] is a point at which the
trajectories loss separation. The parameter N ∈ N represents a maximum depth
for the bounding algorithm polyMinmax presented in §5.3. The parameters εD
and εH are usually 0, except when Po and Pi are polynomial approximations of
non-polynomial trajectories in which case they are small nonnegative real numbers.

Theorem 4 states that the algorithm cd polyN,εD,εH
is correct, as defined

in §3.2, when εD = εH = 0.

Theorem 4 (Correctness for Polynomial Trajectories). For all polynomial trajec-
tories Po and Pi from Rm into R3, boxes [aaa,bbb] ∈ Rm, and depths N ∈ N,

1. cd polyN,0,0(D,H,Po, Pi, aaa,bbb) = NoConflict implies

¬conflict?(D,H,aaa,bbb, Po, Pi).

2. cd polyN,0,0(D,H,Po, Pi, aaa,bbb) = LossAt(ccc) implies

los?(D,H,Po(ccc), Pi(ccc))

and hence ¬conflict?(D,H,aaa,bbb, Po, Pi) holds.

Theorem 4 is a particular case of a more general theorem that takes the param-
eters εD and εH into account. Theorem 5 shows that the algorithm cd poly can
also be used to compute conflict information for arbitrary trajectories, assuming
that polynomial approximations are known.
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cd polyN,εD,εH
(D,H, Po, Pi, aaa, bbb) : CDOutcome ≡

let p = λxxx : (Po(xxx)z − Pi(xxx)z)
2/H2,

q = λxxx : (Po(xxx)(x,y) − Pi(xxx)(x,y))
2/D2,

omm = polyMinmax(p, q,aaa, bbb, N, MaxVarMinDir,

cd localexitD,H,εD,εH
,

cd globalexitD,H,εD,εH
) in

if cd localexitD,H,εD,εH
(omm) then

IsFalse

elsif cd globalexitD,H,εD,εH
(omm) then

Conflict(omm.lbvar)

else

Unknown

endif

Figure 9: The function cd poly

Theorem 5 (Correctness for Arbitrary Trajectories). For all aircraft trajectories
Po, Pi : Rm → R3, polynomial trajectories P ′o, P

′
i : Rm → R3, nonnegative real num-

bers εD = εoD + εiD and εH = εoH + εiH , boxes [aaa,bbb] ∈ Rm, and depths N ∈ N,
such that P ′o and P ′i are polynomial approximations of Po and Pi, respectively, i.e.,
approx?(aaa,bbb, εoD, εoH , Po, P ′o) and approx?(aaa,bbb, εiD, εiH , Pi, P ′i ) hold,

1. cd polyN,εD,εH
(D,H,P ′o, P

′
i , aaa,bbb) = NoConflict implies

¬conflict?(D,H,aaa,bbb, Po, Pi).

2. cd polyN,εD,εH
(D,H,P ′o, P

′
i , aaa,bbb) = LossAt(ccc) implies

los?(D,H,Po(ccc), Pi(ccc))

and hence ¬conflict?(D,H,aaa,bbb, Po, Pi) holds.

Notice that the applications of cd poly in Theorem 5 involve the polynomial
trajectories P ′o and P ′i , whereas the conclusions involve Po and Pi. Theorem 4 and
Theorem 5 have both been formally proved in PVS. Theorem 4 follows trivially
from Theorem 5 by setting Po = Po, Pi = Pi, εD = 0, and εH = 0. The proof of
Theorem 5 follows from Theorem 3 in §5.3 and Proposition 1 in §3.3.



Reliable Computing, 2012 31

Theorem 4 and Theorem 5 are proved in PVS and they are available as
part of the formal development at http://shemesh.larc.nasa.gov/people/cam/
Bernstein.

6.2 An Example with Polynomial Trajectories

Consider the following two polynomial trajectories of type R→ R3, meaning that
they only depend on the time parameter and do not involve uncertainties.

Po(t) = (−3.2484 + 270.7 t+ 433.12 t2 − 324.83999 t3,

15.1592 + 108.28 t+ 121.2736 t2 − 649.67999 t3,

38980.8 + 5414.0 t− 21656.0 t2 + 32484.0 t3)

Pi(t) = (1.0828− 135.35 t+ 234.9676 t2 + 3248.4 t3,

18.40759− 230.6364 t− 121.2736 t2 − 649.67999 t3,

40280.15999− 10828.0 t+ 24061.9816 t2 − 32484.0 t3)

These trajectories represent the 3D Euclidean positions of the ownship and intruder
aircraft, respectively.

The unit of time for these trajectories is hours (hr), the unit of horizontal
position is nautical miles (nm), and the unit of vertical position is feet (ft). The
minimum separation standard is 5nm horizontally and 1000ft vertically, i.e., D = 5
and H = 1000. The lookahead time is assumed to be 3 minutes, i.e., T = 1

20 . Since
the only variable of the polynomial is time, the box of interest for conflict detection
is just the interval [0, T ].

At time t = 0 hours (current time), the positions of the ownship and in-
truder aircraft are (−3.2484, 15.1592, 38980.8) and (1.0828, 18.40759, 40280.15999),
respectively. At this time, the aircraft are approximately 5.414 nm apart horizon-
tally, and approximately 1299.36 ft apart vertically. Thus, given the minimum
separation standard, the aircraft are not currently in loss of separation. However,
the algorithm cd poly predicts that the aircraft are in conflict. That is,

cd polyN,0,0(D,H,Po, Pi) = LossAt(5105/262144), (16)

where N = 1000. Theorem 4 states that these trajectories will be in loss of separa-
tion at time t = 5105

262144 , or in about 70 seconds. Hence, conflict?(D,H, 0, T, Po, Pi)
holds. Indeed, at this time, the aircraft are approximately 4.999 nm apart horizon-
tally and −999.92 ft vertically.

It is important to note that these results, which have been proved in PVS,
are not subject to computation errors. For instance, the evaluation of cd poly in
Formula (16) is mathematically equal to Conflict(5105/262144). Furthermore,
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at time t = 5105
262144 the horizontal between the aircraft is strictly less than 5 hori-

zontally and strictly less than 1000 vertically.

6.3 Conflict Detection with Turning Trajectories

The trajectory of an aircraft in a steady turn, without considering uncertainties,
is described by the parametric function turns,R,α,ω,vz : R→ R, with parameters s,
R, α, ω, and vz, defined by Formula 3 in §3.1. Even though the function turn
is not defined by polynomials, it can be approximated by polynomials. For any
given natural number n > 0, the following polynomial trajectory approximates the
trajectory turns,R,α,ω,vz .

turnpolys,R,α,ω,vz ,n(t) = s + (
n∑
i=0

R
(−1)i

(2i+ 1)!
(α+ t ω)2i+1,

n∑
i=0

R
(−1)i

(2i)!
(α+ t ω)2i,

t vz).

(17)

The summations in the first and second components of this trajectory represent
Taylor series expansions of R sin(α+ t · ω) and R cos(α+ t · ω), respectively. The
next lemma gives a bound for the error of this approximating trajectory, in terms
of the predicate approx? defined in Section 3.3.

Lemma 2. For any parameters s, α, R, ω, vz, and natural numbers n, the poly-
nomial trajectory turnpolys,α,R,ω,vz ,n approximates turns,α,ω,R,vz over the time
interval between 0 and T , i.e.,

approx?(0, T, ε1 + ε2, 0, turns,α,ω,R,vz , turnpolys,α,R,ω,vz ,n)

holds, where
β ≡ max(|α|, |α+ T · ω|),

ε1 ≡ R
β3+2n

(3 + 2n)!,

ε2 ≡ R
β2+2n

(2 + 2n)!.

It is easy to see that ε1 and ε2 in Lemma 2 converge to zero as n approaches
infinity. While this gives a bound for the error of the approximation, it depends
on n. Thus, it is helpful to first specify the desired precision δD and then compute
a number n such that ε1 + ε2 < δD. This can be accomplished through a function
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named exp term num that takes as inputs a nonnegative real number x and a
positive precision ε > 0. It returns a natural number j > x+ 1 with the property
that xk

k! < ε for all k ≥ 2 j. The existence of such a function follows from the fact
that xk

k! converges to zero as k approaches infinity. There are many ways to define
such a function, and in the PVS development it is defined recursively.

According to Lemma 2 and Theorem 5, the function turnpoly can be used
to deduce conflict information for trajectories defined by turn. This is stated
explicitly in the following theorems, which consider the case where both aircraft
are turning and where only one aircraft is turning. These theorems have been
formally proved in PVS.

Theorem 6 (Both Aircraft Are Turning). For all Po, P ′o, Pi, P
′
i , so, si, αo, αi,

ωo, ωi, Ro, Ri, voz, viz, βo, βi, n, cd outcome, N, D, H, and T , if

• Po = turnso,αo,ωo,Ro,voz ,

• Pi = turnsi,αi,ωi,Ri,viz ,

• βo = max(|αo|, |αo + T · ωo|),

• βi = max(|αi|, |αi + T · ωi|),

• n = exp term num(εD/(4 max(Ro, Ri)),max(βo, βi)),

• P ′o = turnpolyso,αo,Ro,ωo,voz ,n,

• P ′i = turnpolysi,αi,Ri,ωi,viz ,n
, and

• cd outcome = cd poly(D,H,P ′o, P
′
i , 0, T, N, εD, 0),

then

1. cd outcome = NoConflict implies ¬conflict?(D,H, 0, T, Po, Pi).

2. cd outcome = LossAt(ccc) and εD < D implies conflict?(D,H, 0, T, Po, Pi).

Theorem 7 (Only The Intruder Aircraft Is Turning). For all Po, Pi, P ′i , so, si,
vo, αi, ωi, Ri, viz, βi, n, cd outcome, N, D, H, and T , if

• Po = linearso,vo (cf. Section 3.1),

• Pi = turnsi,αi,ωi,Ri,viz ,

• βi = max(|αi|, |αi + T · ωi|),

• n = exp term num(εD/(2Ri), βi),
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• P ′i = turnpolysi,αi,Ri,ωi,viz ,n
, and

• cd outcome = cd poly(D,H,Po, P ′i , 0, T, N, εD, 0),

then

1. cd outcome = NoConflict implies ¬conflict?(D,H, 0, T, Po, Pi).

2. cd outcome = LossAt(ccc) and εD < D implies conflict?(D,H, 0, T, Po, Pi).

7 Conclusion

A polynomial global optimization method for developing verifiable conflict detec-
tion algorithms for arbitrary trajectories has been proposed. The key idea of the
method is to compute bounds for the maximum and minimum values of a function
that is defined as the maximum of two polynomials. The bounds are computed
using a recursive branch-and-bound algorithm via Bernstein polynomials.

The proposed method has been specified and verified in the interactive theorem
prover PVS, and it assumes that computations are performed using real number
semantics with infinite precision, a built-in feature of PVS. In a programming
language, this semantics can be achieved using a library for arbitrary precision
arithmetic such as GMP.4

In contrast to other global optimization methods, the method proposed here
has been mechanically verified in a theorem prover. Therefore, it is guaranteed
to be free of logical errors. Further, if implemented in a programming language,
the correctness of the software only depends on the correctness of the library
for arbitrary precision arithmetic, which is relatively small compared to general
purpose global optimization environments such as GlobSol5 and COCONUT6. The
use of a specialized algorithm, which has been formally verified, as opposed to a
general tool for global optimization could greatly simplify the certification process
needed for the deployment of safety-critical CD&R systems.

Branch-and-bound methods for global optimization are usually exponential in
the number of variables, and the method presented here is not the exception.
However, recent developments in branching and pruning heuristics and efficient
representations of multivariate polynomials make Bernstein polynomial methods
practical in many cases. Future research will study the feasibility of the proposed
approach for airborne conflict detection, where the computational resources are
scarce and the frequency of execution is on the order of 1Hz.

4http://gmplib.org/.
5http://interval.louisiana.edu/GlobSol.
6http://www.mat.univie.ac.at/~coconut/coconut-environment.
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